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F45072 Orléans, France
nacim.ramdani@univ-Orléans.fr

Abstract—This paper proposes a robust tracking controller
based on the state estimation for a quadrotor. Using the dif-
ferential flatness theory, it is demonstrated that the quadrotor
model can be changed to a linearized form which facilitate the
creation of a state feedback controller. Since some state vectors
of the obtained linearized model cannot be measured directly, a
high gain observer is implemented to estimate them. After that,
utilizing the estimation state obtained by the latter observer, a
new guidance law is developed for the quadrotor enabling a
robust tracking to the desired trajectory despite the existence of
unmesurable states. The numerical simulation of the quadrotor
system is done in order to evaluate the performance of the robust
tracking control scheme.

Index Terms—Differential flatness, tracking controller, high-
gain observers, quadrotor.

I. INTRODUCTION

Recently, the use and development of quadrotors become
very important compared with other flying vehicles. This su-
periority is due to the simplicity of their mechanical structure,
good maneuverability and low speed flight. The quadrotor has
been applied in many areas such as transportation, military
interdiction, rescue, surveillance etc. Despite these advantages,
the quadrotor has a strongly nonlinear model with coupling
multi-variables. Therefore, the trajectory planning and the
tracking problem for these latter become more complex.
Currently, the differential flatness property introduced by
Fliess [1] has proven to be a good tool to ameliorate the
trajectory planning and to create tracking controllers for linear
and nonlinear systems. Thus, with flatness, we can express all
the trajectories of the system as a function of the flat outputs
and their derivatives. Consequently, we can develop a flatness
control which allows the system to pass from an initial state to

an end state. In the last decade, the flatness property has been
extensively used for the planning and tracking of quadrotor
trajectory. In [2], Jing Yu proposed an optimal trajectory
generation algorithm based on transcription method, flatness
and B-spline curve. Consequently, based on the flatness prop-
erty, the number of optimization variables decreased, which
facilitated the resolution task for the optimization solver. In
[3], Lu developed a trajectory planner based on the Bezier
polynomials to resolve the online optimization problem and
on backstepping control to resolve the trajectory tracking
problem. In [4], José combined a flatness and predictive
control strategy to ensure an online trajectory tracking.
Although those tracking control schemes can ameliorate the
trajectory tracking result of the quadrotor, all of them are
developed on assuming that all of the states are measurable
which is not always true in practice flight. In addition, the aug-
mentation number of sensors complicates the implementation
of the system in real application, hence the need for a good
observer to estimate the quadrotor state.
In the last decade the high gain observer [5] appear as a
good solution to estimate the system state under measurement
noise. Therefore, this observer has the same structure of the
Luenberger observer. The advantages of the high gain observer
have been utilized to develop different robust tracking con-
trollers, which can be applied strongly in a lot of applications
such as, the sliding mode control for nonlinear system [6],
the adaptive control of flexible-joints surgical robot [7], the
tracking feedback controller for wheeled mobile robot [8], the
robust integral backstepping controller for permanent magnet
synchronous motor [9], and the feedback Linearization of a
robot manipulator system [10].
In this paper, the contribution consists in creating a robust
tracking law for the quadrotor based on a flatness and a



high gain observer. Utilizing the flatness property, it is proven
that the quadrotor model can be changed to the Burnovsky
canonical system [11]. According to this obtained linearized
model, a state feedback controller is developing permitting an
exact trajectory tracking. Other problems are treated in the
creation of this feedback control consist on the estimation of
the non-measurable state variables in the quadrotor model. To
deal with such a problem, a high gain observer is proposed.
After that, based the observer result, a robust guidance law is
implemented for the quadrotor permitting an accurate tracking
to desired trajectory despite the existence of un-measurable
states and measurement noise.
This article is organized as follows. In section II, we present
the quadrotor model. In section III, we define the tracking
controller for the quadrotor. In section IV, we present a robust
tacking controller for the quadrotor. Finally, section V deals
with the simulation results.

II. QUADROTOR MODEL

Figure.1 Quadrotor aircraft scheme.

A quadrotor (Figure 1) is an aircraft with four engines
installed on a cross usually made of carbon fiber. In [12], the
principle of quadrotor flight was described. In the literature,
a lot of work has been done to determine the dynamic model
of the quadrotor. In this article, we consider the commonly
employed quadrotor model obtained via the Newton-Euler
equations as follows [13]:

ẍ =
τ1
m

(cosψ sin θ cosφ+ sinψ sinφ) (1)

ÿ =
τ1
m

(sinψ sin θ cosφ− cosψ sinφ) (2)

z̈ =
τ1
m

(cos θ cosφ)− g (3)

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

) +
l

Iy
τ2 (4)

φ̈ = θ̇ψ̇(
Iz − Iy
Ix

) +
l

Ix
τ3 (5)

ψ̈ = φ̇θ̇(
Iy − Ix
Iz

) +
1

Iz
τ4 (6)

where Xp = [x, y, z] are the coordinates of the quadrotor
center, Θ = [θ, φ, ψ] are the Euler angles, m represents the
mass, g is the acceleration and l is the distance from the center
of gravity to each rotor. The moments of inertia along the
directions x, y and z are defined by Ix, Iy and Iz. Moreover,
τ1, τ2, τ3 and τ4 are the controlled input. The quadrotor model
stands as a relatively complex model to deal with. Thereby,
we suppose that when the quadrotor flies towards the target
ψ = 0. In this condition, the quadrotor model (1-6) can be
defined as follows:

ẍ =
τ1
m
sinθ cosφ (7)

ÿ =
−τ1
m

sinφ (8)

z̈ =
τ1
m

cos θ cosφ− g (9)

θ̈ =
l

Iy
τ2 (10)

φ̈ =
l

Ix
τ3 (11)

III. TRACKING CONTROL

In this section, a flatness-based tracking control is created
for the quadrotor. This control law permits the quadrotor
system to follow the desired reference trajectories. Consider
The nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (12)

The system defined by equation (12) is differentially flat if it
is possible to have the following outputs:

σ = ξ1(x, u, u̇, ...., u(r−1)) (13)

and
x = ξ2(σ, σ̇, σ̈...., σ(β)) (14)

u = ξ3(σ, σ̇, σ̈..., σ(β+1)) (15)

where β and r are a real number and ξ1, ξ2 and ξ3 are a
functions.
The quadrotor model is a differentially flat system whose flat
outputs are given by σ = [σ11, σ21, σ31]T = [x, y, z]T . So, all
the state and control inputs for the quadrotor can be expressed
as a function of the flat outputs σ and their derivatives as
follows:

θ = arctan(
σ̈1

g + σ̈3
) (16)

φ = arcsin(
−σ̈2√

σ̈2
1 + σ̈2

2 + (g + σ̈3)2
) (17)

τ1 = m
√
σ̈2

1 + σ̈2
2 + (g + σ̈3)2 (18)

τ2 =
l

Iy
(

....
σ 1

g + σ̈3
− σ̈1

....
σ 3

(g + σ̈3)
2 − 2

...
σ1

...
σ3

(g + σ̈3)
2 + 2

σ̈1(
...
σ3)

2

(g + σ̈3)
3 )

(19)



τ3 =
l

Ix
(
(ü1σ2 − u1

....
σ 2)(u1

√
u2

1 − σ̈2
2)− (u̇1σ̈2 − u1

...
σ2)(u̇1

√
(u2

1 − σ̈2
2))

u2
1(u2

1 − σ̈2
2)

)

+
l

Ix
(
(u1(u2

1(u2
1 − σ̈2

2)1/2(u1u̇1 − σ̈2
...
σ2)))

u2
1(u2

1 − σ̈2
2)

)

(20)

where
u1 =

√
σ̈2

1 + σ̈2
2 + (g + σ̈3)2 (21)

The flatness property allows computing an endogenous feed-
back linearization that transforms the non linear system in a
controllable linear system. Because the relationship between
the control input vector, (τ1, τ2, τ3), and the flat output’s
highest derivatives is not invertible, it is necessary to create
a second order dynamic prolongation of τ1. Considering τ1
and τ̇1 as an additional state, the new state and control
of the prolonged quadrotor systems are given by X =
[x, ẋ, y, ẏ, z, ż, θ, p, φ, q, τ1, τ̇1]T and U = [τ̈1, τ2, τ3]T . To
obtain the invertible relation between the prolonged inputs and
the higher derivatives of the flat outputs, we differentiate the
equations (7), (8), (9) until the input terms τ̈1, τ2, τ3 appear
as follows: ....

σ11....
σ21....
σ31

 = A+B

τ̈1τ2
τ3

 (22)

with

A =

axay
az

 , B =

µx1 µx2 µx3

µy1 µy2 µy3

µz1 µz2 µz3


where ax, ay , az , µx1, µx2, µx3, µx4, µy1, µy2, µy3, µz1, µz2
and µz3 are written as a function of the flat outputs σ and their
derivatives. According to equation (22), the feedback law that
linearizes the quadrotor system can be defined as follows:τ̈1τ2

τ3

 = B−1

....
σ11....
σ21....
σ31

−A (23)

When substituting the control input defined by equations (23)
in equation (22), we obtain the state-space Brunovsky form
(BF) as follows:

BF1


σ̇11 = σ12

σ̇12 = σ13

σ̇13 = σ14

σ̇14 = vx

(24)

BF2


σ̇21 = σ22

σ̇22 = σ23

σ̇23 = σ24

σ̇24 = vy

(25)

BF3


σ̇31 = σ32

σ̇32 = σ33

σ̇33 = σ34

σ̇34 = vz

(26)

where vx, vy and vz are an appropriate feedback controller that
permits the flat output σ11, σ21 and σ31 to track the desirable
reference trajectories σxd, σyd, σzd, respectively. The feedback
controller is defined as follows:

vx =
....
σ xd +Kx4(

...
σxd − σ14) +Kx3(σ̈xd − σ13)

+Kx2(σ̇xd − σ12) +Kx1(σxd − σ11)
(27)

vy =
....
F yd +Ky4(

...
F yd − F24) +Ky3(F̈yd − F23)

+Ky2(Ḟyd − F22) +Ky1(Fyd − F21)
(28)

vz =
....
F zd +Kz4(

...
F zd − F34) +Kz3(F̈zd − F33)

+Kz2(Ḟzd − F32) +Kz1(Fzd − F31)
(29)

The feedback gains Kx1, Kx2, Kx3, Kx4, Ky1, Ky2, Ky3,
Ky4, Kz1, Kz2, Kz3 and Kz4 can be chosen so that the char-
acteristic polynomial associated to each flat output tracking
error is Hurwitz. The flatness control defined by equation (23)
cannot allow an asymptotic robust tracking of the trajectory
under the existence of un-measurable state and measurement
noise, hence the need for a robust tracking controller that will
be designed based on an observer that estimates all the state
despite the existence of measurement noise.

IV. ROBUST TRACKING CONTROL

The development of the control laws (22) necessitates the
knowledge (measurement) of the state σ and its derivatives.
Therefore, a high gain observer is designed. The Burnovsky
systems defined by equations (24-26) can be written in a
matrix form as follows:

σ̇1 = A1σ1 +B1vx (30)

σ̇2 = A2σ2 +B2vy (31)

σ̇3 = A3σ3 +B3vz (32)

where
σ1 = [σ11, σ12, σ13, σ14]T , σ2 = [σ21, σ22, σ23, σ24]T ,
σ3 = [σ31, σ32, σ33, σ34]T ,

A1 = A2 = A3 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B1 = B2 = B3 =


0
0
0
1


The high-gain observer proposed to estimate the state
of the Burnovsky form (24-26) are defined as follows:

˙̂σ1 = A1σ̂1 +B1vx + L1C1(σ1 − σ̂1) (33)

˙̂σ2 = A2σ̂2 +B2vy + L2C2(σ2 − σ̂2) (34)

˙̂σ3 = A3σ̂3 +B3vz + L3C3(σ3 − σ̂3) (35)

where C1 = C2 = C3 =
[
1 0 0 0

]
. The gain matrix Li

has the following form:

L1 =
[

Γ11

ε
Γ12

ε2
Γ13

ε3
Γ14

ε4

]T
(36)

L2 =
[

Γ21

ε
Γ22

ε2
Γ23

ε3
Γ24

ε4

]T
(37)

L3 =
[

Γ31

ε
Γ32

ε2
Γ33

ε3
Γ34

ε4

]T
(38)



where ε is a small positive number. In addition, the parameters
Γ11, Γ12, Γ13, Γ14, Γ21, Γ22, Γ23, Γ24, Γ31, Γ32, Γ33 and Γ34

are selected in order that the roots of the following equation:

s4 + Γ11s
3 + Γ12s

2 + Γ13s+ Γ14 = 0 (39)

s4 + Γ21s
3 + Γ22s

2 + Γ23s+ Γ24 = 0 (40)

s4 + Γ31s
3 + Γ32s

2 + Γ33s+ Γ34 = 0 (41)

have a real negative part.
Based on the high observer result defined by equation (33-
35), a new estimated feedback controller can be obtained
when replacing the states by their estimation in the feedback
controller defined by equations (27-29) as follows:

v̂x =
....
σ xd +Kx4(

...
σxd − σ̂14) +Kx3(σ̈xd − σ̂13)

+Kx2(σ̇xd − σ̂12) +Kx1(σxd − σ̂11)
(42)

v̂y =
....
σ yd +Ky4(

...
σyd − σ̂24) +Ky3(σ̈yd − σ̂23)

+Ky2(σ̇yd − σ̂22) +Ky1(σyd − σ̂21)
(43)

v̂z =
....
σ zd +Kz4(

...
σzd − σ̂34) +Kz3(σ̈zd − σ̂33)

+Kz2(σ̇zd − σ̂32) +Kz1(σzd − σ̂31)
(44)

When integrating the estimated feedback defined by equation
(42-44) in the flatness-based tracking control (23), we obtain
the robust tracking control applied to the quadrotor as follows:¨̂τ1

τ̂2
τ̂3

 = B̂−1

v̂xv̂y
v̂z

− Â (45)

Â =

âxây
âz

 , B =

µ̂x1 µ̂x2 µ̂x3

µ̂y1 µ̂y2 µ̂y3

µ̂z1 µ̂z2 µ̂z3


where âx, ây , âz , µ̂x1, µ̂x2, µ̂x3, µ̂x4, µ̂y1, µ̂y2, µ̂y3, µ̂z1, µ̂z2
and µ̂z3 are a function depending on the estimated flat outputs
σ̂ and their derivatives.

V. SIMULATION AND RESULTS

In this section, the proposed robust tacking control based on
flatness and high gain observer is implemented to demonstrate
its effectiveness. Then we consider the AR-Drone quadrotor
whose parameters are given by :
Ix = Iy = 0.003 Kg.m2, Iz = 0.006 Kg.m2, m = 0.4 Kg
l = 0.3 m , g = 9.81 m.s−2.
Before dealing with the control and the observer, a reference
trajectory is generated for the quadrotor permits its movement
from the initial state X(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

to the final state X(10) = [6, 0, 5, 0, 0, 0, 0, 0, 0, 0]T .
Based on the flatness property of quadrotor system,
the initial conditions for the desired trajectories are
σxd(0) = σ̇xd(0) = σ̈xd(0) = σyd(0) = σ̇yd(0) =
σ̈yd(0) = σzd(0) = σ̇zd(0) = σ̈zd(0) = 0 and the final
conditions are σxd(10) = σ̇xd(10) = σ̇yd(10) = σ̈yd(10) =
σ̇zd(10) = σ̈zd(10) = 0, σxd(10) = 6, σyd(10) = 5.
Thereby, any curve that satisfies this condition can be used as
a desired trajectory for the quadrotor. In our case, we utilize
the B-spline [14] curve of order 8 as a suitable function to

approximate the flat output as follows:

σid(t) = δi0(1 − t)8 + 8δi1(1 − t)7t + 28δi2(1 − t)6t2P +
56δi3(1− t)5t3 +70δi4(1− t)4t4 +56δi5(1− t)3t5 +28δi6(1−
t)2t6 + 8δi7(1− t)t7 + δi8t

8.

where δij i = 1, 2, 3, j = 0, 1, 2, 3, 4, 5, 6, 7, 8 are the
variable parameters of the B-spline curve [14]. To show
more the robustness of the proposed tracking controller,
it is considered that the quadrotor undergoes a parametric
variation of 30% respectively in m and l. In addition, we
assume that the quadrotor system is subjected to Gaussian
noise. The high gain observer parameters are selected as:
ε = 0.005, Γ14 = Γ24 = Γ24 = 81, Γ13 = Γ23 = Γ23 = 36,
Γ12 = Γ22 = Γ32 = 27 and Γ11 = Γ21 = Γ31 = 12.
The controller parameters are selected as follows:
Kx1 = Ky1 = Kz1 = 625, Kx2 = Ky2 = Kz2 = 500,
Kx3 = Ky3 = Kz2 = 150, Kx4 = Ky4 = Kz2 = 20.
Figure 2, 3, 4 and 5 depict the output response of the system.
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Figure.2 Simulation results for quadrotor position
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Figure.3 Simulation results for quadrotor attitude
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Figure.4 Simulation results for quadrotor velocity.
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Figure.5 Simulation results for quadrotor angular velocity.

From Figures 2-5, it can be seen firstly that quadrotor state
can be estimated by the high gain observer under the existence
of measurement noise. In addition, Figures 2-5 show that
the quadrotor can successfully follow the desired reference.
Consequently, we can deduce that the proposed guidance law
based on flatness and a high gain observer improves the
tracking performance for the quadrotor despite the existence
of un-measurable states and measurement noise.

VI. CONCLUSION

The tracking trajectory problem for the quadrotor is studied
in this article. Based on the flatness property that the system
presents and on the high gain observer, a new guidance
law is proposed for the quadrotor in order to improve its
tracking performance. The simulation results indicate that the
proposed tracking control scheme is robust against parameter
uncertainties and measurement noise. In Future work, we will
consider the existence of disturbance in the quadrotor model.
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