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Abstract— In this work, the differential flatness property and
the sliding mode controller design are proposed for a quadrotor
in order to track a predefined reference trajectory despite the
presence of uncertain parameters. Firstly, differential flatness
is utilized to resolve the problem for trajectory generation
and tracking for the quadrotor. Next, a sliding controller is
combined with a flatness design to guarantee the robustness of
the tracking strategy. The numerical simulations of quadrotor
system are done in order to evaluate the performance of the
suggested control scheme.

I. INTRODUCTION

In recent years, special attention has been paid to drones
because they can successively follow trajectory and station-
ary flight. This gives them many practicable applications
such as military interdiction, transportation and surveillance.
In this sense, intensive research efforts have been devoted to
the quadrotor helicopters because of their advantages over the
conventional drones. This dominance is due to the simplicity
of the mechanical structure, the good maneuverability and
low speed flight. Despite these advantages, the quadrotor
has a strongly nonlinear model with coupling multi-variables.
Therefore, the trajectory planning and the tracking problem
for quadrotor become more complex.
Recently, the flatness property introduced by Fliess [1] has
proven to be a good tool to enhance the trajectory planning
and to design tracking controllers for linear and nonlinear
systems. Thus , the flatness can express all the trajectories
of the system as a function of the flat outputs and their
derivatives. Consequently, we can develop an open-loop
control law which allow the system to pass from an initial
state to an end state.
In the last decade, flatness property has been extensively used
for the planning and tracking of quadrotor trajectory. In [2],
Jing Yu proposed an optimal trajectory generation approach
based on the transcription method, the flatness and the b-
spline curve. As a result, the flatness allows the decrease
in the variable number of optimization trajectory problem to
have a more computational performance. Lu [3], developed a
trajectory planner based on the Bezier polynomials to resolve
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online optimization problem and a backstepping control to
resolve the trajectory tracking problem. José [4] combined
a flatness and predictive control strategy to ensure online
trajectory tracking.
Although those control strategies can improve the trajectory
tracking performance, all of them are designed based on
exact model and do not compute parameter uncertainties in
quadrotor model. Hence, the sliding control is combined with
flatness to improve the robustness of the tracking strategy.
The sliding mode control developed by Utkin [5] was a
special type of a variable structure control. Its principal
idea consisted, firstly in converge the system states towards
a sliding surface called a sliding surface which depended
on a set of static relationships between state variables. It
consisted secondly in designing a discontinuous control law
that permits the stabilization of the system states on such
a surface. The advantage of this approach its insensitivity
to parametric uncertainties and the model errors. Despite
this advantage, the discontinuity of the sliding control causes
chattering [6], which can excite the high frequencies of the
process and damage it.
On the other hand, there exists a lot of work utilising the
sliding mode to control the quadrotors. In [7], Benallegue
suggested a feedback linearization controller based on a high-
order sliding mode observer. The observer role consisted
in the estimation of the external disturbance effect. Run-
charoon [8] developed a sliding control for the quadrotor.
The controller is composed of two parts, the sliding mode
was utilized to control the attitude of the system and the
proportional-derivative controller was done so as to stabilize
the horizontal position of the system. In [9], Sudhir combined
adaptive and sliding controllers in order to obtain a robust
tracking strategy in spite the existence of disturbances with
unknown bounds. In [10], Mallavalli developed an integral
terminal sliding mode control to ensure the trajectory track-
ing to the quadrotor subject to actuator faults. In [11], Yeh
put forward a robust attitude controller based on the sliding
mode controller and the fuzzy inference mechanism for the
quadrotor in the existence of white noise interference.
In this paper, the contribution consists in creating a robust
guidance law for a quadrotor based on flatness and a sliding
controller. So, the flatness ensures the tracking and the
reference planning and the sliding controller improves the
robustness of the tracking guidance law.
This article is organized as follows. In section II, we present
the quadrotor model. In section III, we define the flatness
control for the quadrotor. In section IV, we present the sliding
approach based on flatness. Finally, section V deals with the
simulation results.



II. QUADROTOR MODEL

The quadrotor in Figure.1 is an aircraft with four engines
installed on a cross usually made of carbon fiber. The front
and rear engines rotate clockwise while the right and left
engines rotate in the opposite direction. A lot of work has
been done on the mathematical modeling of a quadrotor
and the equations of motion are well established. In this
article, we consider the commonly employed quadrotor
model obtained via the Lagrange approach as follow [12]:

Figure.1 Quadrotor aircraft scheme.

ẍ(t) =
u1
M

(cosψ sin θ cosφ+ sinψ sinφ) (1)

ÿ(t) =
u1
M

(sinψ sin θ cosφ− cosψ sinφ) (2)

z̈(t) =
u1
M

(cos θ cosφ)− g (3)

θ̈(t) = φ̇ψ̇(
Iz − Ix
Iy

) +
l

Iy
u2 (4)

φ̈(t) = θ̇ψ̇(
Iz − Iy
Ix

) +
l

Ix
u3 (5)

ψ̈(t) = φ̇θ̇(
Iy − Ix
Iz

) +
l

Iz
u4 (6)

where x,y and z are the coordinates of the quadrotor center.
M represents the mass, θ, φ and ψ are the Euler angles. g is
the acceleration, l is the distance from the center of gravity
to each rotor. The moments of inertia along the directions x,
y and z are defined by Ix, Iy and Iz. Moreover, u1, u2, u3
and u4 are the controlled input. Quadrotor model stands as
a relatively complex model to deal with. Then, we assume
that θ and φ are very small and when the quadrotor flies

to-wards the target ψ = 0. In this condition, the quadrotor
model (1-6) can be rewritten as follows:

ẍ(t) =
θu1
M

(7)

ÿ(t) =
−φu1
M

(8)

z̈(t) =
u1
M
− g (9)

θ̈(t) =
l

Iy
u2 (10)

φ̈(t) =
l

Ix
u3 (11)

where the state system of the quadrotor is X = [x, ẋ, y, ẏ, z,
ż, θ, θ̇, φ, φ̇]T and the control input is U = [u1, u2, u3]

T .

III. FLATNESS CONTROL

The following nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (12)

is differentially flat if we find the following outputs:

F = ξ(x, u, u̇, ...., u(r−1)) (13)

and
x = γ(F, Ḟ , F̈ ...., F (α)) (14)

u = γ(F, Ḟ , F̈ ..., F (α)) (15)

where α and r are finite multi-indices and ξ and γ are
smooth vector functions of the output vector F .
The flatness property allows computing an endogenous
feedback linearization and a diffeomorphism that transforms
the closed-loop system in a controllable linear system whose
flat outputs constitute the state vector .
It can be shown that the quadrotor model is a differentially
flat system whose flat outputs are given by F1 = z, F2 = x,
F3 = y. The control of the vertical position can be obtained
by using equation (9) as follows:

u1 =M(g + F̈1) (16)

By introducing (16), the quadrotor system (7)-(11) is written
as follows:

ẍ(t) = θ(g + F̈1) (17)

ÿ(t) = −φ(g + F̈1) (18)

z̈(t) = F̈1 (19)

θ̈(t) =
l

Iy
u2 (20)

φ̈(t) =
l

Ix
u3 (21)

To obtain u2 and u3, we differentiate (17) and (18) until the
input terms u2 = Iy

l θ̈ and u3 = Ix
l φ̈ appear as follows :

....
x (t) =

....
z θ + 2θ̇

...
z + θ̈(g + z̈) (22)

....
y (t) = −φ....

z − 2φ̇
...
z − φ̈(g + z̈) (23)



Note that the parameterization of θ , θ̇ and φ ,φ̇ in function
of the flat outputs is as follows:

θ =
F̈2

g + F̈1

(24)

φ =
−F̈3

g + F̈1

(25)

θ̇ =

...
F 2(g + F̈1)−

...
F 1F̈2

(g + F̈1)(2)
(26)

φ̇ =
−

...
F 3(g + F̈1) +

...
F 1F̈3

(g + F̈1)(2)
(27)

The input terms u2 and u3 can be defined as follows:

u2 =
Iy

l
(

....
F 2

g + F̈1

− F̈2

....
F 1

(g + F̈1)2
−2

...
F 2

...
F 1

(g + F̈1)2
+2

F̈2(
...
F 1)

2

(g + F̈1)
3 )

(28)

u3 =
Ix

l
(
−

....
F 3

g + F̈1

+
F̈3

....
F 1

(g + F̈1)
2 +2

...
F 3

...
F 1

(g + F̈1)
2 −2

F̈3(
...
F 1)

2

(g + F̈1)
3 )

(29)
The flatness control defined by equation (16), (28) and (29)
cannot allow an asymptotic robust tracking of the trajectory
in the presence of parameter uncertainties. Hence, a robust
correction term will be added to the open control in order
to ensure the convergence of the tracking error to zero. This
latter constituted of two parts: one part that depends on the
tracking error and the second part is a discontinuous term
for the robustness which comes from the sliding mode.

IV. SLIDING CONTROLLER BASED ON FLATNESS

Let F1d, F2d , F3d be the reference trajectory for the flat
outputs F1,F2 and F3. Let the error dynamic be defined by
ei = Fi−Fid(i = 1, ...., 3). The sliding mode control based
on flatness law is designed to make sure that the tracking
error ei converges to zero despite the existence of uncertain
parameters. The design of the sliding mode control needs
two steps: The choice of the sliding surface and the design
of the control law. The sliding surfaces for the quadrotor are
chosen based on the tracking errors as follows:

σz = ė1 + β11e1 (30)

σx =
...
e 2 + β23ë2 + β22ė2 + β21e2 (31)

σy =
...
e 3 + β33ë3 + β32ė3 + β31e3 (32)

where the gains βij , (i, j = 1, .., 3) can be determined by
using pole-placement techniques to ensure that the tracking
errors e1 = z − zd, e2 = x − xd and e3 = y − yd
asymptotically converge to zero. Consider σ = [σz, σx, σy]

T ,
the error dynamics restricted to σ = 0 are defined as follows:

ė1 + β11e1 = 0 (33)
...
e 2 + β23ë2 + β22ė2 + β21e2 = 0 (34)
...
e 3 + β33ë3 + β32ė3 + β31e3 = 0 (35)

According to [13], to make The sliding surface σ = 0
attractive. we can force the surface σ to satisfy the dynamics
as follows:

σ̇ = −αisgn(σ) (36)

where αi, i = 1..3 represent a positive real constant and sgn
is the standard signum function. In order to demonstrate the
stability of the error dynamics, let consider the Lyapunov
function:

V =
1

2
σ̇σ (37)

the derivate of V is defined as follows:

V̇ = σσ̇ (38)

Then V is positive and V̇ ≤ 0. Therefore, the asymptotic
Lyapunov stability is guaranteed. According to the equations
(30), (31), (32) and (36), we obtain:

−α1sign(σz) = ë1 + β11ė1 (39)

−α2sign(σx) =
....
e 2 + β23

...
e 2 + β22ë2 + β21ė2 (40)

−α3sign(σy) =
....
e 3 + β33

...
e 3 + β32ë3 + β31ė3 (41)

As a consequence, according to equation (39), (40) and (41),
we obtain:

F̈1 = F̈1d − β11ė1 − α1sign(σz) (42)
....
F 2 =

....
F 2d − β23

...
e 2 − β22ë2 − β21ė2 − α2sign(σx) (43)

....
F 3 =

....
F 3d − β33

...
e 3 − β32ë3 − β31ė3 − α3sign(σy) (44)

Substituting F̈1,
....
F 2,

....
F 3 by their new expression defined by

equation (42), (43) and (44) in (16), (28) and (29), we obtain
the flatness sliding tracking controller for the quadrotor as
follows:

u1 =M(g+v1) (45)

u2 =
Iy

l
(

v2

g + F̈1

− F̈2

....
F 1

(g + F̈1)2
−2

...
F 2

...
F 1

(g + F̈1)2
+2

F̈2(
...
F 1)

2

(g + F̈1)
3 )

(46)

u3 =
Ix

l
(
−v3
g + F̈1

+
F̈3

....
F 1

(g + F̈1)
2 +2

...
F 3

...
F 1

(g + F̈1)
2 −2

F̈3(
...
F 1)

2

(g + F̈1)
3 )

(47)
with

v1 = F̈1d−β11ė1−α1sign(σz) (48)

v2 =
....
F 2d − β23

...
e 2 − β22ë2 − β21ė2 − α2sign(σx) (49)

v3 =
....
F 3d − β33

...
e 3 − β32ë3 − β31ė3 − α3sign(σy) (50)

The sliding controller based on flatness defined by equations
(45), (46) and (47) is discontinuous control due the existence
of the function sgn(σ) which provokes the chattering of
the control inputs. Thus, to avoid this problem the function
sgn(σ) can be replaced by σ

‖ σ‖+τ or tanh(σ), where τ is
a tuning parameter utilized to reduce the chattering effect.
Figure.2 show the guidance law based on flatness and sliding
control applied to the quadrotor.



Figure.2 schematic diagram of the guidance law applied to the quadrotor.

V. SIMULATION AND RESULTS

In this section, the proposed sliding control based on
flatness for the quadrotor is implemented to illustrate
its effectiveness. After that, we consider the AR Drone
quadrotor available in laboratories. The AR-Drone param-
eters were given by [14] and are defined in Table 1.

Parameters Value Unit
g 9.81 m.s−2

M 0.5 Kg
l 0.175 m
Ix 0.002 Kg.m2

Iy 0.002 Kg.m2

Table 1: AR drone parameters
Before dealing with control , it is desired to generate
the trajectory which allows the quadrotor to move
from an initial state X(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

to a final state X(10) = [2, 0, 8, 0, 0, 0, 0, 0, 0, 0]T .
Based on the flatness property of quadrotor system,
the initial conditions for the desired trajectories are
F1d(0) = Ḟ1d(0) = F̈1d(0) = F2d(0) = Ḟ2d(0) = F̈2d(0) =
F3d(0) = Ḟ3d(0) = F̈3d(0) = 0 and the final conditions are
F1d(10) = Ḟ1d(10) = F̈1d(10) = Ḟ2d(10) = F̈2d(10) =
Ḟ3d(10) = F̈3d(10) = 0, F2d(10) = 2, F3d(10) = 8 .
Thereby, any curve that satisfies this condition can be used
as a desired trajectory for the quadrotor. In our case, we
utilize the Bezier curve of order 8 as a suitable function to
approximate the flat output as follows:

Fid(t) = Pi0(1 − t)8 + 8Pi1(1 − t)7t + 28Pi2(1 −
t)6t2P + 56Pi3(1 − t)5t3 + 70Pi4(1 − t)4t4 + 56Pi5(1 −
t)3t5 + 28Pi6(1− t)2t6 + 8Pi7(1− t)t7 + Pi8t

8

where Pij i = 1..3, j = 0..8 are the variable parameters. In
order to illustrate the efficiency of the sliding flatness-based
control, it is considered that the quadrotor undergoes a
parametric variation of 20% respectively in M , Ix and Iy.
Figure 3, 4 and 5 shows the output response of the system.
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Figure.3 Results for position tracking of quadrotor..
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Figure.4 Results for attitude tracking of quadrotor.

Figure.5 Results for 3D tracking of quadrotor.

It can be observed that the quadrotor can successfully follow
the predefined trajectory despite the uncertainties. Hence, the
sliding controller based on flatness improves the robustness
of the guiding law for the quadrotor. Figure.6 show the
sliding controller based on flatness applied to the quadrotor.
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Figure.6 Sliding controller based on flatness

VI. CONCLUSION

The problem of the robust tracking trajectory for the
quadrotor is treated in this paper. Based on the flatness
property that the system presents , a sliding mode control is
proposed in order to improve the robustness of the tracking
scheme. The simulation results indicate that the flatness prop-
erty with the sliding control is considered as a powerful tool
for optimizing planning and robust tracking trajectory. Our
future work takes into count the existence of disturbances
with unknown bounds in a quadrotor system. Therefore,
an adaptive flatness sliding controller will be designed to
improve the tracking performance.
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