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Summary

This work proposes an optimal trajectory generation and a robust flatness–based
tracking controller design to create a new performance guidance module for the
quadrotor in dense indoor environments. The properties of the differential flat-
ness, the B-spline, and the direct collocation method are exploited to convert the
constrained optimization problem into a nonlinear programming one, which
can be easily resolved by a classic solver. After that, the obtained optimal ref-
erence trajectory is applied to the dynamic quadrotor model and two different
flatness-based controllers, namely, one based on feedback linearization and one
based on feedforward linearization, are developed and compared to ensure the
trajectory tracking despite the existence of disturbances and parametric uncer-
tainties. Numerical simulation is executed to evaluate the proposed optimal
trajectory generation approach and the robust tracking strategies. It turns out
that the controller based on feedforward linearization outperforms the feedback
linearization one in robustness and permits obtaining a performance guidance
law for an uncertain quadrotor system.
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1 INTRODUCTION

Over the last few decades, the quadrotor has become a mostly frequent drone in the literature due to its simple structure,
economic cost, and ability to perform stationary flights. The quadrotor was primarily used in the military field such as
sentinels and for the evaluation of sensitive areas. Recently, the field of application of these flying machines has become
very varied. They can be used in industrial, civil, and emergency situations. In spite of these advantages, the quadrotor
has a strongly nonlinear model with coupling multivariables. Thus, the optimal trajectory generation and the tracking
problems of the quadrotor have become very complex. In the literature, a lot of numerical methods1 have been utilized to
solve the optimal trajectory generation problems for the quadrotor, which are classified into two kinds: indirect and direct.

Indirect methods consist in solving the problem of the two-point limit value arising from the Pontryagin's mini-
mum principle. This method requires specific analytical calculations for each optimization trajectory example. Since the
quadrotor has a nonlinear model, indirect methods have been used only for a few examples, ie, the one being examined
by Hehn et al.2 Direct methods are developed while avoiding the disadvantages of the two-point limit value resolution,
by converting the path optimization problem into a nonlinear programming (NLP) problem, which can be solved using
an NLP solver such as spare nonlinear optimizer (SNOPT).3 The principle of the direct method is to approximate the
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state and control variable by utilizing curvilinear functions such as B-splines,4 Bezier,5 the pseudospectral,6 and Hermit
polynomials.7 Accordingly, the parameters of these curves represent the decision variable of the optimization problem.
Among the applications of the direct method for the quadrotor, Wang et al8 used the pseudospectral method to generate a
time-optimal trajectory reference, and Kahale et al9 utilized the direct collocation method to solve the same problem. The
disadvantage of these two methods was the large number of variables utilized during the optimization problem, which
complicated the resolution task for solvers. To solve this problem, another approach was created to solve the optimiza-
tion trajectory problem of the quadrotor based on differential flatness,10 where the problem dimensions were decreased
to have a more computational performance. Moreover, the flatness property was extensively used for the planning and
tracking of quadrotor trajectories. Aguilar-Ibáñez et al11 proposed flatness and exact-tracking-error linearization to solve
the trajectory tracking problem. Chamseddine et al12 developed a trajectory planning/replanning strategy based on Bezier
polynomials and a flatness property for the quadrotor to drive the system form an initial position to a final one as fast
as possible under actuator faults and without hitting system constraints. Fernández-Caballero et al13 utilized the flatness
approach and the generalized proportional integral to ensure the exponentially stable behavior of the controlled quadrotor
position and orientation despite the existence of noisy measurements and disturbances. Limaverde Filho et al14 combined
the flatness and predictive-control strategies to ensure an online trajectory tracking for the quadrotor. Lu et al15 put for-
ward an online optimization process based on the differential flatness to generate desired references and a backstepping
controller to track the obtained optimal trajectory.

Although those flatness control algorithms could improve the trajectory tracking performance, all of them were
designed based on a nonlinear quadrotor model that did not integrate parameter uncertainties and external disturbances,
which was not real in practical applications. Thus, a robust control is necessary to be combined with the flatness control
so as to design a robust flatness controller that ensures a good tracking for the quadrotor under parametric uncertainties
and external disturbances.

Until now, in the literature, there have existed few approaches studying the robustness problem of flat systems.
Hagenmeyer and Delaleau16,17 suggested an approach to analyze the robustness of the tracking error based on the dif-
ferential flatness whose stability result was studied by Kelemen. In addition, Lavinge et al18 developed a modeling-based
method to deal with parametric uncertainties. First, they modelized the quasi-linearized system as a disturbed linear
plant composed by models belonging to a compact set of linearized plants and a model of uncertainties. Second, a linear
controller based on the H∞ method and the 𝜇-synthesis analysis was designed to take the uncertainties into account. In
the same context, another modeling approach was presented by Zerar et al,19 where a nonlinear uncertain differentially
flat system was transformed into a linear parameter varying plant by a first-order linearization of the error model along
the nominal trajectory. After that, a gain-scheduling H-infinity controller was developed to resolve the robust tracking
trajectory problem. This approach was useful in a lot of practical applications, but when the perturbations are large, the
first-order-linearization–based approach could not guarantee stability. Antritter et al20 combined the flatness and interval
method to improve the robustness of the tracking controller. Therefore, the interval methods were utilized to calculate
the maximal admissible uncertainties in the plant, whose controlled system could be guaranteed to stay within a partic-
ularized neighborhood of the reference trajectory. Most of the methods cited for studying the robustness of flat systems
have considered the uncertainties in the dynamic model, and not the uncertainties caused by invertible transformations
between the flat output states and the original system states. Hence, Ryu and Agrawal21 proposed a robust flatness control
based on the Lyapunov redesign for a mobile robot to track the trajectory reference in the presence of slips. Chen et al22

combined the flatness approach and the sliding control to create a robust tracking strategy for the flat system despite the
existence of disturbances with unknown bounds.

In this paper, the contribution consists in the creation of a robust and performant guidance module for the quadrotor in
dense indoor environments. Thus, two objectives are necessary. Firstly, a smooth and feasible trajectory has to be gener-
ated to avoid static obstacles. In fact, an optimization problem will be created where the obstacles are defined as constraints
and the jerk as a cost function. Therefore, the optimization problem will be complicated because of the number of con-
straints. Then, an approach based on the theory of differential flatness, the B-spline function and the collocation algorithm
are utilized to solve the optimization problem more easily. Secondly, a robust flatness–based controller is designed for the
quadrotor system to track the obtained optimal reference trajectories in spite of the existence of parametric uncertainties
and disturbances.

This document is organized as follows. In Section 2, the quadrotor model is presented. In Section 3, the optimization
trajectory problem is defined. In Section 4, the algorithm of the optimal trajectory generation is defined as well. Section 5 is
devoted to the design of the tracking controller for a quadrotor without considering uncertainties. In Section 6, we present
the robust flatness–based tracking control for an uncertain quadrotor, and Section 7 deals with the simulation results.
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FIGURE 1 Quadrotor aircraft scheme [Colour figure can be viewed at wileyonlinelibrary.com]

2 QUADROTOR MODEL

The quadrotor (Figure 1) is an aircraft with four engines installed on a cross usually made of carbon fiber. The front and
rear engines rotate clockwise while the right and left engines rotate in the opposite direction. A lot of work has been
done to model the quadrotor. In this paper, we consider the commonly used quadrotor model obtained via the Lagrange
approach23 as follows:

ẍ(t) = u1

M
(cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙) (1)

𝑦̈(t) = u1

M
(sin𝜓 sin 𝜃 cos𝜙 − cos𝜓 sin𝜙) (2)

z̈(t) = u1

M
(cos 𝜃 cos𝜙) − g (3)

𝜃̈(t) =
.
𝜙

.
𝜓

(
Iz − Ix

I𝑦

)
+ l

I𝑦
u2 (4)

𝜙̈(t) =
.
𝜃

.
𝜓

( Iz − I𝑦
Ix

)
+ l

Ix
u3 (5)

𝜓̈(t) =
.
𝜙

.
𝜃

( I𝑦 − Ix

Iz

)
+ l

Iz
u4, (6)

where the coordinates of the quadrotor center is defined by x, y, and z; M represents the mass; g is the acceleration; l is the
distance from the center of gravity to each rotor; and 𝜃, 𝜙, and 𝜓 are the pitch, roll, and yaw Euler angles. The moments
of inertia along the directions x, y, and z are defined by Ix, Iy, and Iz directions, respectively. Moreover, u1, u2, u3, and u4
are the controlled inputs. The quadrotor model stands a relatively complex model to deal with. Thereby, we suppose that
when the quadrotor flies toward the target, 𝜓 = 0, so, the quadrotor model (1)-(6) can be rewritten as follows:

ẍ(t) = u1

M
sin 𝜃 cos𝜙 (7)

𝑦̈(t) = −u1

M
sin𝜙 (8)
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z̈(t) = u1

M
cos 𝜃 cos𝜙 − g (9)

𝜃̈(t) = l
I𝑦

u2 (10)

𝜙̈(t) = l
Ix

u3, (11)

where the state system of the quadrotor is X = [x, .x, 𝑦, .
𝑦, z, .z, 𝜃,

.
𝜃, 𝜙,

.
𝜙]T , and the control input is U = [u1,u2,u3]T.

3 OPTIMAL TRAJECTORY GENERATION PROBLEM

The target is to determine a smooth desired trajectory, which allows the quadrotor to avoid obstacles in a closed environ-
ment. This problem is considered as an optimal control problem defined by the state constraints, the obstacle avoidance
constraints and the cost function.

3.1 Constraint state
The boundary conditions of our optimization problem are

X(t0) = [x0,
.x0, 𝑦0,

.
𝑦0, z0,

.z0, 𝜃0, p0, 𝜙0, q0]T (12)

X(t𝑓 ) = [x𝑓 ,
.x𝑓 , 𝑦𝑓 ,

.
𝑦𝑓 , z𝑓 ,

.z𝑓 , 𝜃𝑓 , p𝑓 , 𝜙𝑓 , q𝑓 ]T . (13)

To improve the performance of the guidance module of the quadrotor, specific constraints are integrated in the model.
These restrictions are represented in bounds on state variables as follows:

xmin ≤ x ≤ xmax (14)

𝑦min ≤ 𝑦 ≤ 𝑦max (15)

zmin ≤ z ≤ zmax (16)

𝜃min ≤ 𝜃 ≤ 𝜃max (17)

𝜙min ≤ 𝜙 ≤ 𝜙max, (18)
where xmin, xmax, ymin, ymax, zmin, zmax, 𝜃min, 𝜃max, 𝜙min, and 𝜙max represent the limit constraint states that permit the
quadrotor to move in a specific defined environment.

3.2 Obstacle constraint
In the literature, there exists a lot of solutions to resolve the avoidance obstacle problem. Among these solutions is the
definition of the obstacle avoidance as an inequality constraint for the optimization problem. Consequently, the obstacle
model must be known or approximated from the beginning. Most work in the literature has algebraically defined the
obstacles by utilizing the p-norm24 to design generic shapes such as spheres and ellipses. Equation ob(x, y, z) shows the
general form of the obstacle modeling used in this section as follows:

ob(x, 𝑦, z) =
(x − xob

a

)p
+
(𝑦 − 𝑦ob

b

)p
+
(z − zob

c

)p
− 1, (19)

where x, y, z are the quadrotor position; xob, yob, and zob represent the center of each obstacle; a is the distance from
the center to the obstacle boundary in the x-direction; b is the distance from the center to the obstacle boundary in the
y-direction; and c is the distance from the center to the obstacle boundary in the z-direction. In Gatzke25 research article,
we can find a lot of examples explaining the utilization of the equation obstacle model (19). Figure 2 demonstrates the
influence of p in the construction of the forms of obstacles. When choosing p = ∞, the optimization problem will become
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p=2

p=1 p=

FIGURE 2 Unit p [Colour figure can be viewed at wileyonlinelibrary.com]

computationally unresolved. For this reason, p is limited to 10 to facilitate the optimization problem. The constraint,
which means that the quadrotor can avoid the obstacle, is defined as ob(x, y, z) > 0. This constraint does not take into
account the size of the quadrotor because it is considered as a point that is not really in a practice flight. Hence, the
constraint means that a quadrotor obstacle avoidance in a real case is defined as follows:(x − xob

a

)p
+
(𝑦 − 𝑦ob

b

)p
+
(z − zob

c

)p
− 1 > Rs. (20)

Radius Rs integrated in the obstacle representation allows additional safety around the obstacle zone. The integration of
the obstacle constraint, defined by Equation (20), in the problem of optimization enables choosing a reference trajectory
to avoid the collision with static obstacles. When the obstacles are dynamic, an online optimization problem will be
formulated, which gradually takes into account the new position of obstacles detected by the obstacle sensor.

3.3 Cost
Choosing a good cost function is important for the definition of the optimal problem. This choice depends usually on our
needs, so it can directly influence the task performance ability of the quadrotor. In the literature, a lot of work has yielded
desired robot trajectories such as Flash and Hogan26 and Kyriakopoulos and Saridis.27 Therefore, based on those results,
researches generating a smooth trajectory consist in minimizing the jerk, which is defined as follows:

J =

t𝑓

∫
t0

(...
x 2 +

...
𝑦

2
+

...
z 2)2

dt. (21)

4 OPTIMAL TRAJECTORY GENERATION APPROACH

In the direct collocation method, a big number of optimization variables and constraints are generated because of the rich
discretization on trajectory optimization problems. These optimization variables and constraints result in a long solution
time and are linked to the time node and the number of state and control variables. Thus, we should find an approach to
reduce these variables so as to decrease the solution time without any decline in solution accuracy.

In this section, an approach is presented to rapidly solve optimal trajectory problems. This approach is based on the
simultaneous use of the differential flatness to decrease the dimensional space of optimal problems, the B-spline curves
to approximate trajectories and the collocation method to transform an optimal problem in an NLP one.

4.1 Optimal problem in flat output space
The quadrotor has a very high dimension of the state space. Consequently, the computational loads increase, hence,
complicating the problem of optimization. At this stage, the differential flatness, introduced by Fliess et al,28 reduces the
dimension of the optimization problem defining the flat variables. For a differentially flat system, the following nonlinear
system:

.x = 𝑓 (x,u), x ∈ ℝn,u ∈ ℝm (22)

http://wileyonlinelibrary.com
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is differentially flat if we can find outputs such that

F = 𝜉(x,u, .u, … ,u(r−1)) (23)

x = 𝛾(F,
.
F, F̈, … ,F(𝛼)) (24)

u = 𝛾(F,
.
F, F̈, … ,F(𝛼+1), (25)

where 𝛼 and r are finite multiindices, and 𝜉 and 𝛾 are smooth vector functions of the output vector F.
The first step of the approach is to transform the optimal trajectory problem to a flat output space. Thereafter, let us

consider the following optimal trajectory problem, which consists in finding the state-input pair x(t),u(t) that minimizes
the following performance criterion:

J =

t𝑓

∫
t0

Γ(x(t),u(t))dt. (26)

This criterion is subject to the following system equations:
.x = 𝑓 (x,u), (27)

the following boundary conditions:
X(t0) = X0,X(t𝑓 ) = X𝑓 , (28)

and the following trajectory constraints:
wmin ≤ 𝜆(x(t),u(t)) ≤ wmax, (29)

where 𝜆(x(t),u(t)) is composed of state and obstacle constraints defined in Section 3, and wmin and wmax are the lower and
upper bounds of constraints. When using the flatness properties (24) and (25), the cost, the initial and final conditions,
and the state and obstacle constraints will be expressed as a function of the flat outputs and their derivatives. In as much
as the flat outputs indicate a minimal representation of the system behavior, the number of decision variables for the
transformed optimization problem becomes highly smaller. Added to that, the flatness eliminates the step of differential
equations step to obtain a geometric programming problem, which is computationally tractable and quickly solvable.
Thus, the transformation of the optimization problem (26)-(29) into a flat optimal problem consists in finding the flat
outputs and their derivatives, which minimizes the cost as follows:

J =

t𝑓

∫
t0

Γ(F,
.
F, F̈, … ,F(𝛼+1))dt. (30)

Furthermore, the boundary conditions are satisfied as follows:

F̄i(t0) = F̄i0, F̄i(t𝑓 ) = F̄i𝑓 . (31)

Besides, the trajectory constraints are satisfied as follows:

wmin ≤ 𝜆(F̄i) ≤ wmax (32)

with F̄i = [Fi,
.
Fi, F̈i, … ,F(r)

i ], i = 1..n, where n is the number of the flat output and 𝜆(F̄i) is the trajectory constraint.

4.2 Approximation of flat variables
To get feasible trajectories, we need to set all the flat outputs as appropriate functions. In addition, to select a good function
of the flat output with a reasonable number of parameters, it is necessary to define the level of continuity Ck and to
estimate the effect of each parameter to quickly find a curve corresponding to the right solution.

Several curves can be used to specify the flat output (Fourier series, polynomials, … ). Actually, it is possible to express
the flat output in terms of a finite-dimensional B-spline. The B-spline formalism29 proposes a suitable solution for defining
piecewise polynomial trajectories and offering the best elasticity due to the small number of parameters. Hence, the
B-spline curves are defined in the following way:

Fi(t) =
Nc∑

k=1
Bk,r(t)𝛼ik, i = 1, … ,n, (33)



734 ABADI ET AL.

where 𝛼ik is the control parameters and Nc represents the number of control parameters. Indeed, Nc = N ∗ (r − s) + s,
where N is the number of intervals, r is the degree of the polynomial pieces, s is the smoothness condition at breakpoints,
and Bk,r(t) are the basis functions. After the approximation of the flat output, the control points 𝛼ik become the decision
variables for the flat optimal problem (30)-(32). The choice of the B-spline parameters will greatly influence the shape of
the curve and the number of control points used to solve the trajectory optimization problem. Several factors have to be
taken into account when determining the B-spline parameters. Some of them are listed as follows:

- Order of system
- Number of constraints
- Severity of constraints

Generally, increasing the order and the smoothness allows having more flexibility for the curve but it leads also to more
control points, which complicates the optimization problem. Therefore, the choice of the B-spline parameter is a com-
promise between obtaining flexible trajectories with a high continuity and using a low number of parameters to easily
resolve the optimization problem.

4.3 Transferring flat optimal control to NLP problem
Before using the collocation points to discretize the optimal control problem, the physical time-interval domain t ∈ [t0, tf]
needs to be scaled into domain 𝜏 ∈ [−1, 1] by utilizing the Chebyshev Pseudospectral Method30 as follows:

𝜏 =
2t − (t𝑓 + t0)

t𝑓 − t0
. (34)

The collocation point can be determined in the interval [−1 1] using the Chebyshev-Gaussian-Labato as follows:

tk = cos(𝜋k∕N); k = 0, … ,N. (35)

These points are the extreme of the Nth-order Chebyshev polynomial. The ith-order Chebyshev polynomial is
expressed by

Ti(t) = cos(i cos (t)−1). (36)
According to the evaluation rules from the study of Milam,31 the B-splines have the form shown in Equation (37) when
evaluated at the points 𝜏 j, called the collocation points, as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi(𝜏0)
.
Fi(𝜏0)
⋮

Fri
i (𝜏0)
⋮

Fi(𝜏N)
.
Fi(𝜏N)
⋮

Fri
i (𝜏N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Bci

⎡⎢⎢⎣
𝛼i1

⋮
𝛼iNc

⎤⎥⎥⎦ , (37)

where i = 1, … ,n, n is the number of flat outputs and Bci is the collocation matrix based on the B-spline basis functions
for each output. The constraints will be forced to the collocation points 𝜏 j. Increasing the number of collocation points
will raise the accuracy of the optimal solution but this leads to obtaining a strong dimension of the optimization problem,
which complicates the resolution task. Thus, the number of the collocation points is chosen such that the constraints will
be satisfied at all time instants, and the calculation time to resolve the optimization problem will be kept in a reasonable
range. In addition, according to Louembet et al,32 we must at least choose the collocation points, so that the constraints
will be checked at a frequency of one point per second. Finally, the obtained NLP problem is defined as follows:

min J
𝛼̄

(𝛼̄)
⎧⎪⎨⎪⎩
𝛼i1 = Fi0, 𝛼iNc = Fi𝑓

wmin ≤ G1(𝛼̄) ≤ wmax

G2(𝛼̄) = 0
(38)

with:
𝛼̄ = (𝛼11, … , 𝛼1Nc, 𝛼21, … , 𝛼2Nc, … , 𝛼n1, … , 𝛼nNc),
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where G1(𝛼̄) and G2(𝛼̄) are the trajectory constraints as a function of control parameters. Finally, the last step is to use the
SNOPT solver to resolve the NLP problem (38). The nonlinear programming SNOPT solver, developed by Gill et al,33 is a
general-purpose system for a large-scale nonlinearly constrained optimization that utilizes a sparse Sequential Quadratic
Programming method.

5 FLATNESS-BASED TRACKING CONTROL

A flatness controller is created to allow the quadrotor system to follow the obtained optimal reference trajectories. It can
be shown that the quadrotor model (7)-(11) is a differently flat system, whose flat outputs are given by F1 = x, F2 = y,
F3 = z. The flatness property has proven its power in optimal planning. In addition, it enables designing an endogenous
feedback linearization and a diffeomorphism to obtain a Brunovsky's canonical form, whose state vector is defined by the
flat outputs. Consequently, the optimal trajectory planning and the tracking problems can be defined as an equivalent
flat output domain. According to the quadrotors model (7)-(11), the input torques u2 and u3 are written as a function of
the fourth-order time derivatives of the flat outputs x, y, and z. Due to the parameterization of the control input u1 that
depends on the second-order time derivatives of x, y, and z, it is impossible to create a static feedback linearization, hence,
the need for a second-order dynamic extension of u1 to create an invertible relation between the original states and the flat
outputs as well as their derivatives. To solve this problem more easily, Delaleau and Rudolph34 suggested tracking control
for a flat system based on a quasi-static state feedback. This approach has been applied successfully for chemical reactors35

and gantry cranes.36 The main advantage of using the quasi-static state feedback in the design of flatness-based tracking
control consists in the fact that there are no extra dynamics integrated into the control loop as in dynamic feedback
linearization. As the latter, it also permits obtaining linear tracking error dynamics for nonlinear flat systems. The idea of
a quasi-static state feedback is based on the framework of generalized state representations defined as follows:

.
x̂i = Ai(x̂,

.u, ü, … ,u(𝜀i)) i = 1, … ,n, (39)

where the set x̂ = (x1, … , xn) is called a (generalized) state.
According to Rudolph and Delaleau,37 the control input u and the closed-loop input v are related by a quasi-static

feedback of the (generalized) state x, if

- the feedback law is defined as follows:
.
x̂i = Ξi(x̂,

.v, v̈, … , v(𝜍i)) i = 1, … ,n (40)

- this feedback is invertible:
vi = Ξi(x̂,

.u, ü, … ,u(𝜍i)) i = 1, … ,n (41)

- x̂ is a (generalized) state of the closed-loop system with a new input v.
In the following, based on the quasi-static feedback properties, two different flatness-based tracking control designs are
proposed for the quadrotor.

5.1 Exact feedback linearization
Tuple x̂ = [x, .x, ẍ,

...
x , 𝑦, .

𝑦, 𝑦̈,
...
𝑦 , z, .z]T represents a generalized Brunovsky state for the quadrotor system. Therefore, the new

input v = [v1, v2, v3]T = [
....
x ,

....
𝑦 , z̈]T defines a quasi-static state feedback. However, the control inputs u1, u2, and u3 must

be expressed by functions, which depend on the known state x, the new input v, and the time derivatives of v only. Based
on the quadrotor flat outputs F = [x, y, z] = [F1,F2,F3]T, it is possible to express all the state and control inputs as a
function of the flat outputs F and their derivatives, and as function of v and their derivatives as follows:

𝜃 = arctan
(

F̈1

g + v3

)
(42)

𝜙 = arcsin
⎛⎜⎜⎜⎝

−F̈2√
F̈2

1 + F̈2
2 + (g + v3)2

⎞⎟⎟⎟⎠ (43)
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u1 = M
√

F̈2
1 + F̈2

2 + (g + v3)2 (44)

u2 = l
I𝑦

(
v1

g + v3
− F̈1v̈3

(g + v3)2 − 2
...
F 1

.v3

(g + v3)2 + 2 F̈1(
.v3)2

(g + v3)3

)
(45)

u3 = Ml
Ix

⎛⎜⎜⎜⎜⎝
(ü1F2 − u1v2)

(
u1

√
u2

1 − M2F̈2
2

)
− ( .u1F̈2 − u1

...
F 2)

(
.u1

√(
u2

1 − M2F̈2
2
))

u2
1
(

u2
1 − M2F̈2

2
)

⎞⎟⎟⎟⎟⎠
+ Ml

Ix

⎛⎜⎜⎜⎝
(

u1

(
u2

1
(

u2
1 − M2F̈2

2
)1∕2

(
u1

.u1 − M2F̈2
...
F 2

)))
u2

1
(

u2
1 − M2F̈2

2
) ⎞⎟⎟⎟⎠ ,

(46)

where .u1 and ü1 are defined as follows:

.u1 = M
(F̈1

...
F 1 + F̈2

...
F 2 +

.v3(g + v3))√
F̈2

1 + F̈2
2 + (g + v3)2

(47)

ü1 = M

(
(
...
F 1)2 + F̈1v1 + (

...
F 2)2 + F̈2v2 + ( .v3)2(v3 + g)v̈3√

(F̈1)2 + (F̈2)2 + (v3 + g)2
−

(F̈1
...
F 1 + F̈2

...
F 2 + (v3 + g) .v3)2

((F̈1)2 + (F̈2)2 + (v3 + g)2)
3
2

)
. (48)

Consider F1d, F2d, and F3d to be the reference trajectories for the flat outputs F1, F2, and F3, respectively. Since our control
problem requires obtaining accurate tracking of the reference, then the control input v1, v2, and v3 are defined as follows:

v1 =
....
F 1d − K14e(3)1 − K13ë1 − K12ė1 − K11e1 (49)

v2 =
....
F 2d − K24e(3)2 − K23ë2 − K22ė2 − K21e2 (50)

v3 = F̈3d − K32ė3 − K31e3 (51)

with e1 = F1 − F1d, e2 = F2 − F2d, and e3 = F3 − F3d. In addition to v1 , v2, and v3, the first and the second time
derivatives of v3 are also required. The differentiation of (51) yields

.v3 =
...
F 3d − K32ë3 − K31ė3 (52)

v̈3 =
....
F 3d − K32

...
e 3 − K31ë3. (53)

The dynamics of the closed-loop tracking error turns into the following form:

ė = He (54)

with e = [e1, ė1, ë1,
...
e 1, e2, ė2, ë2,

...
e 2, e3, ė3], H =

[ H1 044 042
044 H2 042
024 024 H3

]
, H1 =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

K11 K12 K13 K14

⎤⎥⎥⎥⎦, H2 =
⎡⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

K21 K22 K23 K24

⎤⎥⎥⎥⎦ , and

H3 =
[

0 1
K31 K32

]
. The zero matrix of size n ∗ m is denoted by 0nm. The feedback gains K11, K12, K13, K14, K21, K22, K23,

K24, K31, and K32 can be chosen so that the characteristic polynomial associated to each flat output tracking error will be
Hurwitz.

5.2 Exact feedforward linearization
Although the exact feedback linearization based on flatness shows good results, utilizing flatness only in this context
is too limited. Hence, the notion of an exact linearization method based on flatness was created by Hagenmeyer and
Delaleau38 to ensure more robustness compared to the exact feedback linearization for a nonlinear flat system. Therefore,
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according to the aforementioned authors,38 when the desired trajectory Fd is known, we can compute the desired xd and
the feedforward control ud as follows:

xd = 𝛾
(

Fd,
.
Fd, F̈d, … ,F(𝛼)

d

)
(55)

ud = 𝛾
(

Fd,
.
Fd, F̈d, … ,F(𝛼+1)

d

)
, (56)

The control input (56) is known as an exact feedforward linearization because it gives a Brunovsky representation
during all the times if the initial conditions of the desired trajectory and the system are coherent. Moreover, feed-
back control is generally included in the feedforward control (56) to enhance the tracking performance. In this
case, two-degrees-of-freedom tracking control is developed, which includes two parts: a feedforward part, ud =
𝛾(Fd,

.
Fd, F̈d, … ,F(𝛼+1)

d ) and a feedback part v that represents simple linear control able to stabilize the obtained linearized
system. Based on the reference trajectory and the quasi-static feedback defined in the previous section, we can define the
flatness feedforward linearization control applied to the quadrotor as follows:

u1d = M
√

F̈2
1d + F̈2

2d + (g + v3)2 (57)

u2d = l
I𝑦

(
v1

g + v3
− F̈1dv̈3

(g + v3)2 − 2
...
F 1d

.v3

(g + v3)2 + 2 F̈1d(
.v3)2

(g + v3)3

)
(58)

u3d = Ml
Ix

⎛⎜⎜⎜⎜⎝
(ü1dF2d − u1dv2)

(
u1d

√
u2

1d − M2F̈2
2d

)
− ( .u1dF̈2d − u1d

...
F 2d)

(
.u1d

√(
u2

1d − M2F̈2
2d

))
u2

1d

(
u2

1d − M2F̈2
2d

)
⎞⎟⎟⎟⎟⎠

+ Ml
Ix

⎛⎜⎜⎜⎝
(

u1d

(
u2

1d

(
u2

1d − M2F̈2
2d

)1∕2
(

u1d
.u1d − M2F̈2d

...
F 2d

)))
u2

1d

(
u2

1d − M2F̈2
2d

) ⎞⎟⎟⎟⎠
(59)

with:

.u1d = M
(F̈1d

...
F 1d + F̈2d

...
F 2d +

.v3(g + v3))√
F̈2

1d + F̈2
2d + (g + v3)2

(60)

ü1d = M
⎛⎜⎜⎝
(
...
F 1d)2 + F̈1dv1 + (

...
F 2d)2 + F̈2dv2 + ( .v3)2(v3 + g)v̈3√

(F̈1d)2 + (F̈2d)2 + (v3 + g)2
−

(F̈1d
...
F 1d + F̈2d

...
F 2d + (v3 + g) .v3)2(

(F̈1d)2 + (F̈2d)2 + (v3 + g)2
) 3

2

⎞⎟⎟⎠ , (61)

where the correction terms v1, v2, v3, .v3, and v̈3 are defined by Equations (49)-(53).
The exact feedforward linearization differs from the exact feedback linearization in the way that in feedback lineariza-

tion (44)-(46) state F is utilized, but in the feedforward linearization (57)-(59) the desired trajectory Fd is applied.
According to Hagenmeyer and Delaleau,38 when using the flatness feedforward linearization control (57)-(59), the

corresponding tracking error system can be denoted as follows:

ė = Hde + Υ, (62)

where e = [e1, ė1, ë1,
...
e 1, e2, ė2, ë2,

...
e 2, e3, ė3], Hd =

[ Hd1 044 042
044 Hd2 042
024 024 Hd3

]
, Hd1 = Hd2 =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦, Hd3 =
[

0 1
0 0

]
,

Υ = [ 0 0 0 Υ1(e, F̂d) 0 0 0 Υ2(e, F̂d) 0 Υ3(e, F̂d) ]T , F̂d = [F1d,
.
F1d, F̈1d,

...
F 1d,F2d,

.
F2d, F̈2d,

...
F 2d,F3d,

.
F3d]T .

The robust stability of the tracking error (62) can be analyzed by making use of a result introduced by Kelemen.39

The two flatness-based tracking control laws defined by Equations (44)-(46) and (57)-(59), combined with the feedbacks
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(49)-(53), ensure a good tracking of the optimal desired reference provided that the quadrotor model does not contain
parametric uncertainties and external disturbances. In the next section, we study the design of the robust flatness–based
control for an uncertain quadrotor.

6 ROBUST FLATNESS CONTROLLER OF UNCERTAIN QUADROTOR

In this section, we first depict the effect of uncertainties on the dynamics of the closed-loop tracking error. Second, we
present the robust control strategy.

6.1 Effect of uncertainties
Whatever the method used to obtain a mathematical model of a physical system, there is always a compromise between
the simplicity of the model and its ability to describe all the phenomena that characterize it. These differences between the
model and the system are often modeled by error quantities (input error, output error, model error) because real systems
are mostly nonlinear, poorly defined, or subject to external disturbances. For this reason, the quadrotor model defined in
(7)-(11) does not really describe the unpredictable changes in the flight environment, and consequently, the performance
of the guidance law can be degraded. Hence, a new quadrotor model that takes into account parametric uncertainties and
external disturbances can be defined as follows:

ẍ(t) = u1

M
sin 𝜃cos𝜙 + dx

M
(63)

𝑦̈(t) = −u1

M
sin𝜙 +

d𝑦
M

(64)

z̈(t) = u1

M
cos𝜃cos𝜙 − g +

dz

M
(65)

𝜃̈(t) = l
I𝑦

u2 +
Δl

I𝑦
u2 +

l
I𝑦

d𝜃 (66)

𝜙̈(t) = l
Ix

u3 +
Δl

Ix
u3 +

l
Ix

d𝜙, (67)

where Δl represents the parameter uncertainties, and dx, dy, dz, d𝜃 , and d𝜙 are external disturbances. It is assumed that
the variation in Δl is limited to 50% of its nominal value l. Therefore, Δl is bounded as follows:

||Δl|| ≤ 𝛼l, 0 ≤ 𝛼 ≤ 0.5. (68)

The disturbance and their derived are bounded as follows:

||d|| ≤ 𝜏1, || .
d|| ≤ 𝜏2, || d̈|| ≤ 𝜏3, (69)

where d = [dx, dy, dz, d𝜃, d𝜙]T and 𝜏 i, i = 1 ... 3 are known values as a function of the state variables. When considering
the uncertainties in the quadrotor model (63)-(67), the tracking error dynamics will be expressed as follows:

ė = He + J𝜌, (70)

where 𝜌 and J are two matrices defined as follows:

𝜌 = Ev + G, J =
[

0 0 0 1 0 0 0 1 0 1
]T
, (71)

where v = [v1, v2, v3]T, E and G are two matrices described as a function of the state system, the uncertain parameter Δl,
and the external disturbances d and their derivatives. According to Equation (70), the error dynamics do not converge
to zero due to the existence of 𝜌. As a result, the actual trajectory diverges from the reference. In the next section, we
investigate the application of a robust control strategy presented for a robot mobile21 to an uncertain quadrotor system.
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6.2 Robust control
To compensate the effect of uncertainties, an additional term vr is added to the auxiliary control law v. This gives a new
input v with robustness compensation

v = v + vr, (72)

where v is given by Equations (49)-(51). With this new controller, the tracking error dynamics will be defined as follows:

ė = He + J(𝜌 + vr). (73)

The construction of vr is based on the Lyapunov redesign, which is chosen as follows:

vr =

{
−𝜎(e, t) JT Pe||JT Pe|| for ||JTPe|| ≠ 0

0 for ||JTPe|| = 0,
(74)

where P is the unique positive-definite symmetric solution of the Lyapunov equation

HTP + PH + Q = 0, (75)

where Q represents the symmetric positive-definite matrix, and vr and 𝜌 are bounded as follows:

||vr|| ≤ 𝜎, ||𝜌|| ≤ 𝜎. (76)

Let us define the Lyapunov function candidate as follows:

V = eTPe. (77)

Its derivative is given by
.

V = ėTPe + eTPė. (78)

Substituting ė by Equation (73), the derivative of the Lyapunov function is defined as follows:
.

V = eT(HTP + PH)e + 2eTPJ(vr + 𝜌) (79)
= eT(−Q)e + 2𝜉T(vr + 𝜌) (80)

with 𝜉 = JTPe.
If 𝜉 = 0,

.
V = eT(−Q)e.

If 𝜉 ≠ 0, the second term of Lyapunov function turns out to be as follows:

𝜉T
(
−𝜎 𝜉||𝜉|| + 𝜌

)
= −𝜎 𝜉

T𝜉||𝜉|| + 𝜉T𝜌 (81)

≤ −𝜎|| 𝜉|| + || 𝜉|||| 𝜌||
≤ || 𝜉||(|| 𝜌|| − 𝜎).

Since ||𝜌|| ≤ 𝜎, then
.

V ≤ 0.
Next, we can calculate the function 𝜎(e, t) as follows:

|| 𝜌|| = ||Ev + G|| (82)
≤ ||E||||v|| + ||G||
≤ ||E||||v|| + ||E||||vr|| + ||G||
≤ 𝜔1||v|| + 𝜔1𝜎 + 𝜔2

with ||E|| ≤ 𝜔1 and ||G|| ≤ 𝜔2.

According to inequality (82) and the inequality defined by ||𝜌|| ≤ 𝜎, we can deduce that

𝜎 = 1
1 − 𝜔1

(𝜔1||v|| + 𝜔2). (83)
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We can obtain 𝜔1 and 𝜔2 by algebra calculation as follows:

||E|| = ||N|| = √
𝜆max(NTN) (84)

=

√
Δ2

l||l||
= ||ΔL||||l|| .

From Equation (68), we can deduce that ||N|| ≤ 𝛼. (85)

Matrix G is written as a function of the uncertain parameters ΔL, disturbance d and its derivatives. On examining the
structure of particular terms that compose G, utilizing assumptions (68) and (69), it is feasible to get function 𝛽 of the
known values and the state variables as follows: ||G|| ≤ 𝛽. (86)

According to Equations (85) and (86), we can deduce that

𝜌 = 1
1 − 𝛼

(𝛼||v|| + 𝛽). (87)

The control law defined by (74) provokes the chattering phenomenon of the control inputs due to the existence of
discontinuous terms. Thus, to avoid this problem, we introduce the continuous control as follows:

vr =

{
−𝜎(e, t) 𝜉|| 𝜉|| for || 𝜉|| ≥ 𝜖

−𝜎(e, t) 𝜉
𝜖

for || 𝜉|| < 𝜖, (88)

where 𝜉 = eTPJ, and 𝜖 is a small positive number chosen to reduce chattering in the control.
Substituting vr, defined by Equation (88), into Equation (72), we obtain the robust correction term v. Hence, the nom-

inal control v is replaced by v in the two flatness-based tracking controllers u1, u2, and u3 as well as u1d, u2d, and u3d
to obtain two robust flatness–based tracking controllers. The first is the Robust Feedback Control (RFB) defined by
Equations (89)-(91) and the second is the Robust Feedforward Control (RFF) defined by Equations (92)-(94). These latter
controllers are defined as follows:

uRFB1 = M
√

F̈2
1 + F̈2

2 + (g + v3)2 (89)

uRFB2 = l
I𝑦

(
v1

g + v3
− F̈1v̈3

(g + v3)2
− 2

...
F 1

.
v3

(g + v3)2
+ 2 F̈1(

.
v3)2

(g + v3)3

)
(90)

uRFB3 = Ml
Ix

⎛⎜⎜⎜⎜⎝
(üRFB1F2 − uRFB1v2)

(
uRFB1

√
u2

RFB1 − M2F̈2
2

)
− ( .uRFB1F̈2 − uRFB1

...
F 2)

(
.uRFB1

√(
u2

RFB1 − M2F̈2
2
))

u2
RFB1

(
u2

RFB1 − M2F̈2
2
)

⎞⎟⎟⎟⎟⎠
+ Ml

Ix

⎛⎜⎜⎜⎝
(

uRFB1

(
uRFB112(u2

RFB1 − M2F̈2
2
)1∕2

(
uRFB1

.uRFB1 − M2F̈2
...
F 2

)))
u2

RFB1
(

u2
RFB1 − M2F̈2

2
) ⎞⎟⎟⎟⎠

(91)

uRFF1 = M
√

F̈2
1d + F̈2

2d + (g + v3)2 (92)

uRFF2 = l
I𝑦

(
v1

g + v3
− F̈1dv̈3

(g + v3)2
− 2

...
F 1d

.
v3

(g + v3)2
+ 2 F̈1d(

.
v3)2

(g + v3)3

)
(93)
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uRFF3 = Ml
Ix

⎛⎜⎜⎜⎜⎝
(üRFF1F2d − uRFF1v2)

(
uRFF1

√
u2

RFF1 − M2F̈2
2d

)
− ( .uRFF1F̈2d − uRFF1

...
F 2d)

(
.uRFF1

√(
u2

RFF1 − M2F̈2
2d

))
u2

RFF1
(

u2
RFF1 − M2F̈2

2d

)
⎞⎟⎟⎟⎟⎠

+ Ml
Ix

⎛⎜⎜⎜⎝
(

uRFF1

(
u2

RFF1
(

u2
1d − M2F̈2

2d

)1∕2
(

uRFF1
.uRFF1 − M2F̈2d

...
F 2d

)))
u2

RFF1
(

u2
RFF1 − M2F̈2

2d

) ⎞⎟⎟⎟⎠
(94)

with
v1 =

....
F 1d − K14e(3)1 − K13ë1 − K12ė1 − K11e1 + vr1 (95)

v2 =
....
F 2d − K24e(3)2 − K23ë2 − K22ė2 − K21e2 + vr2 (96)

v3 = F̈3d − K32ė3 − K31e3 + vr3 (97)

.
v3 =

...
F 3d − K32ë3 − K31ė3 +

.vr3 (98)

v̈3 =
....
F 3d − K32

...
e 3 − K31ë3 + v̈r3. (99)

Figure 3 and Figure 4 show the schematic diagram of the two robust flatness–based tracking controllers applied to the
uncertain quadrotor.

FIGURE 3 Schematic diagram of robust feedback linearization control applied to quadrotor

FIGURE 4 Schematic diagram of robust feedforward linearization control applied to quadrotor
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7 SIMULATION RESULTS

In this section, we present the simulation results to demonstrate the efficiency of the proposed optimal trajectory genera-
tion method explained in Section 4 and the robustness of the tracking controller detailed in Section 6. Then, we consider
the AR-Drone quadrotor whose parameters are given by : Ix = Iy = 0.002Kg·m2,M = 0.5Kg, l = 0.2m, g = 9.81m·s−2.

7.1 Simulation 1
A trajectory should be generated to enable the quadrotor to move from an initial state X(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T to
a final state X(5) = [5, 0, 11, 0, 0, 0, 0, 0, 0, 0]T in a room full of obstacles. The obtained trajectory must be minimal in jerk
and be able to avoid static obstacles. In addition, the constraints of states must be respected as follows:

0 ≤ x ≤ 10 m (100)

0 ≤ 𝑦 ≤ 15 m (101)

0 ≤ z ≤ 10 m (102)

−90◦ ≤ 𝜃 ≤ 90◦ (103)

−90◦ ≤ 𝜙 ≤ 90◦ (104)
Three cylinders and three blocks are considered as static obstacles in a closed environment. The approximation model of
the rectangular block is defined as follows:

ob1(x, 𝑦, z) =
(x − 2

2

)10
+ (𝑦 − 7)10 +

(z − 5
5

)10
− 1 (105)

ob2(x, 𝑦, z) =
(x − 8

2

)10
+ (𝑦 − 7)10 +

(z − 5
5

)10
− 1 (106)

ob3(x, 𝑦, z) =
(x − 7

2

)10
+ (𝑦 − 3)10 +

(z − 5
5

)10
− 1. (107)

The approximation model of the cylinder is defined as follows:

ob4(x, 𝑦, z) =
(x − 2

0.9

)2
+
(
𝑦 − 3
0.9

)2

+
(z − 5

5

)10
− 1 (108)

ob5(x, 𝑦, z) =
(x − 5

0.9

)2
+
(
𝑦 − 9
0.9

)2

+
(z − 5

5

)10
− 1 (109)

ob6(x, 𝑦, z) =
(x − 3

0.9

)2
+
(
𝑦 − 10

0.9

)2

+
(z − 5

5

)10
− 1. (110)

Radius R = 0.1m is for safety around the obstacle zone. According to Equations (105)-(110) and (20), the obstacle
constraints integrated into the optimization problem are defined as follows:(x − 2

2

)10
+ (𝑦 − 7)10 +

(z − 5
5

)10
− 1 > 0.1 (111)

(x − 8
2

)10
+ (𝑦 − 7)10 +

(z − 5
5

)10
− 1 > 0.1 (112)

(x − 7
2

)10
+ (𝑦 − 3)10 +

(z − 5
5

)10
− 1 > 0.1 (113)

(x − 2
0.9

)2
+
(
𝑦 − 3
0.9

)2

+
(z − 5

5

)10
− 1 > 0.1 (114)
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(x − 5
0.9

)2
+
(
𝑦 − 9
0.9

)2

+
(z − 5

5

)10
− 1 > 0.1 (115)

(x − 3
0.9

)2
+
(
𝑦 − 10

0.9

)2

+
(z − 5

5

)10
− 1 > 0.1. (116)

After formulating the optimization problem in terms of flat output, we choose for each flat output of F1, F2, and F3,
the curve B-spline defined by the number of intervals n = 1, the smoothness condition s = 11, and the order of the
polynomial r = 12. The number of collocation points is chosen to be 25. The results obtained in this paper are from
the nonlinear programming package (SNOPT). The SNOPT is implemented using feasibility tolerances of 1. 10−5. One
benefit of the direct collocation method utilized in this paper is the convenience in making an initial guess so that with
a large range of initial guesses, the optimization process will converge to the optimal solution, following some iteration.
When utilizing the optimal trajectory generation approach based on flatness, as well as on the collocation method and the
B-spline function, to resolve the optimization trajectory problem for the quadrotor, the number of optimization variables
is defined by: the numbers of a flat output * the number of the control parameters = 3 * 12 = 36. On the other hand, when
using the collocation method or the pseudospectral method to resolve the same trajectory optimization problem for the
quadrotor, the number of optimization variables is defined by: the number of state and control variables for the quadrotor
system * the number of collocation points = (10+3) * 25 = 325. Thus, based on this significant reduction in the variable
optimization number, the proposed method, compared to other conventional methods, allows obtaining a faster solution
to trajectory optimization problems.

To check the efficiency of the RFB and RFF control, we choose 𝛼 = 0.4, which means that the quadrotor undergoes
a parametric variation of 40% in nominal l. Furthermore, the external disturbance acting on the quadrotor is chosen as:
dx = dy = dz = cos(2t) + 1. All the other external disturbances are set to zero. Indeed, 𝜖 is chosen to be 0.1 to reduce
chattering. The gains of the feedback controller are chosen to be K11 = K21 = 625, K12 = K22 = 500, K13 = K23 = 150,
K14 = K24 = 20, K31 = 25, and K32 = 10. Matrix Q in the Lyapunov equation is selected to be an identity. Figures 5 to 13
depict the desired and actual trajectories of the quadrotor under the application of RFB and RFF control to the quadrotor
system subjected to uncertain parameters and external disturbances.
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FIGURE 5 Tracking results for position x. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 Tracking results for position y. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
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FIGURE 7 Tracking results for position z. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 8 Tracking results for velocity x. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
wileyonlinelibrary.com]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time[s]

0

2

4

6

v
[m

]

RFB
RFF
Reference trajectory

FIGURE 9 Tracking results for velocity y. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 Tracking results for velocity z. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 11 Results for attitude tracking of quadrotor. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 12 Results for angular velocity tracking of quadrotor. RFB, robust feedback control; RFF, robust feedforward control [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Results for 2D tracking of quadrotor. RFB, robust feedback control; RFF, robust feedforward control [Colour figure can be
viewed at wileyonlinelibrary.com]
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From Figures 5 to 13, it is firstly seen that the obtained desired trajectory satisfies all constraints defined in the flight
mission. Secondly, it can be observed that both robust flatness–based controllers permit obtaining a good trajectory track-
ing performance for the quadrotor. However, the tracking of the optimal reference trajectory is more accurate using the
RFF control rather than utilizing the RFB control law.

7.2 Simulation 2
To better show the effectiveness of the optimal trajectory generation method and the robust flatness–based tracking con-
trol, we perform other simulation. Thus, we consider the same optimization trajectory problem defined in simulation 1
while choosing two other costs. The first cost to be considered is the time defined as follows:

J =

t𝑓

∫
t0

dt. (117)

The second cost is the control effort defined in Chamseddine et al12 as follows:

J =

t𝑓

∫
t0

(
4u2

1d + u2
2d + u2

3d
)

dt. (118)

The same B-spline parameter and SNOPT solver considered in simulation 1 are used to approximate the flat outputs and
to resolve the optimization problem. Worst-case scenarios are carried out to show more the performance of RFF and RFB.
According to Mallavalli and Fekih,40 to assess the performance under worst-case scenarios, we subject the quadrotor to
parametric variations of 50% in l, to measurement noise and to a periodically changing wind defined as follows:

dx = d𝑦 = dz = 0.01(10 + 5 sin(2𝜋t))m∕ sec (119)

d𝜃 = d𝜙 = 0.1(10 + 5 sin(2𝜋t))rad∕ sec (120)
The gains of the feedback controller are chosen to be K11 = K21 = 104, K12 = K22 = 4.103, K13 = K23 = 500,
K14 = K24 = 40, K31 = 100, and K32 = 20. Figures 14 and 15 depict the results of the optimal trajectory genera-
tion method and the tracking performance when considering the time and the control effort as a cost, respectively, and
when applying RFB and RFF control to the quadrotor system (63)-(67) under the worst-case parametric scenarios. The
required time to complete the trajectory, shown in Figure 14, is tf = 4.5[sec]. From Figures 14 and 15, it can be seen that
the proposed optimal trajectory generation method permits resolving many trajectory optimization problems in different
scenarios. In addition, it can be observed that the RFF control allows a powerful tracking of the optimal trajectory for the

FIGURE 14 Tracking result of minimum time trajectory for the quadrotor. RFB, robust feedback control; RFF, robust feedforward control
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


ABADI ET AL. 747

FIGURE 15 Tracking result of minimum control effort trajectory for the quadrotor. RFB, robust feedback control; RFF, robust feedforward
control [Colour figure can be viewed at wileyonlinelibrary.com]

quadrotor than RFF control, as noted also in simulation 1. This difference is due to the fact that in the RFF control, the
state is injected only in the feedback term, but in the RFB control, the state is integrated into the open-loop control part for
canceling respective nonlinearities. Consequently, modeling errors and measurement noise reduce the robustness track-
ing performance compared to exact feedforward linearization. Hence, according to the simulation results, we can deduce
that the RFF control, combined with the optimal trajectory generation approach, based on the flatness property, the col-
location method, and the B-spline function, permits obtaining a performant guidance law for an uncertain quadrotor
system.

8 CONCLUSIONS

The problem of generating and robustly tracking an optimal trajectory for an autonomous quadrotor flying vehicle has
been studied in this paper. The simulation results have demonstrated that the trajectory generation algorithm based on
the flatness and the direct collocation is efficient. Taking the minimum jerk as a cost makes it possible to have smooth and
natural trajectories that can greatly decrease the error tracking trajectories and reduce the difficulty of designing control
laws. Transforming the problem of obstacle avoidance as an optimization problem facilitates obtaining a trajectory that
avoids static obstacles. In the second part, a RFF is shown to outperform a RFB and prove its effectiveness for tracking a
created optimal trajectory in spite of uncertainties and disturbances. Our future work will take into account the existence
of disturbances with unknown bounds in a quadrotor system. Therefore, an adaptive flatness sliding controller will be
designed to improve the tracking performance.
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